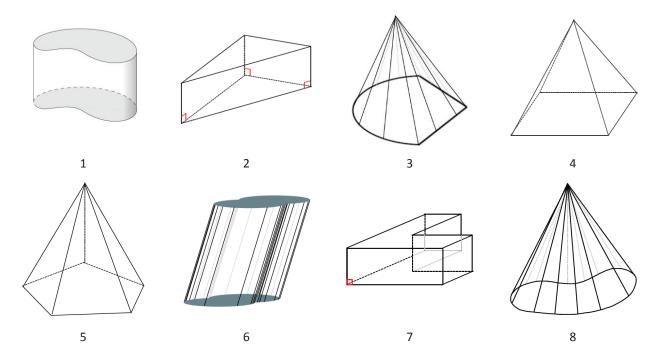


Lesson 7: General Pyramids and Cones and Their Cross-Sections

Classwork

Opening Exercise

Group the following images by shared properties. What defines each of the groups you have made?



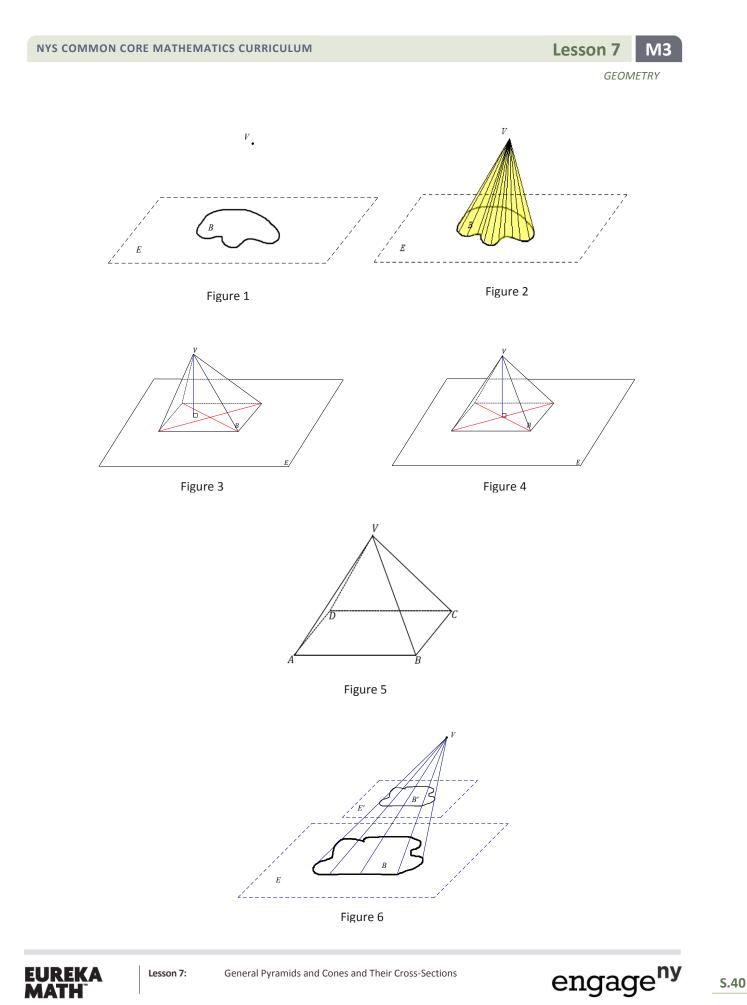
RECTANGULAR PYRAMID: Given a rectangular region B in a plane E and a point V not in E, the rectangular pyramid with base B and vertex V is the collection of all segments VP for any point P in B.

GENERAL CONE: Let B be a region in a plane E and V be a point not in E. The *cone with base* B *and vertex* V is the union of all segments VP for all points P in B (See Figures 1 and 2).

: General Pyramids and Cones and Their Cross-Sections

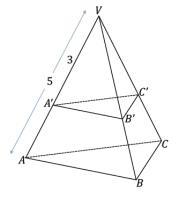
S.39

engage



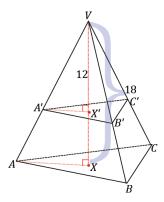
Example 1

In the following triangular pyramid, a plane passes through the pyramid so that it is parallel to the base and results in the cross-section $\triangle A'B'C'$. If the area of $\triangle ABC$ is 25 mm², what is the area of $\triangle A'B'C'$?



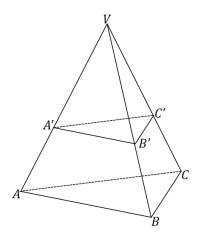
Example 2

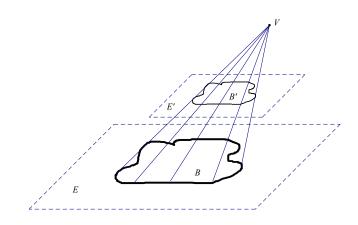
In the following triangular pyramid, a plane passes through the pyramid so that it is parallel to the base and results in the cross-section $\triangle A'B'C'$. The altitude from V is drawn; the intersection of the altitude with the base is X, and the intersection of the altitude with the cross-section is X'. If the distance from X to V is 18 mm, the distance from X' to V is 12 mm, and the area of $\triangle A'B'C'$ is 28 mm², what is the area of $\triangle ABC$?



EUREKA MATH

Extension





Exercise 1

The area of the base of a cone is 16, and the height is 10. Find the area of a cross-section that is distance 5 from the vertex.

Example 3

GENERAL CONE CROSS-SECTION THEOREM: If two general cones have the same base area and the same height, then cross-sections for the general cones the same distance from the vertex have the same area.

State the theorem in your own words.

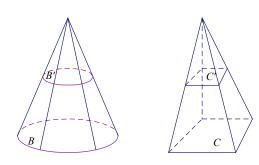
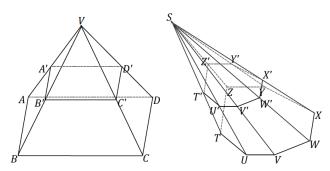


Figure 8

Use the space below to prove the *general cone cross-section theorem*.

Exercise 2

The following pyramids have equal altitudes, and both bases are equal in area and are coplanar. Both pyramids' cross-sections are also coplanar. If $BC = 3\sqrt{2}$ and $B'C' = 2\sqrt{3}$, and the area of TUVWXYZ is 30 units², what is the area of cross-section A'B'C'D'?



Lesson 7:

Lesson Summary

CONE: Let *B* be a region in a plane *E* and *V* be a point not in *E*. The *cone with base B and vertex V* is the union of all segments *VP* for all points *P* in *B*.

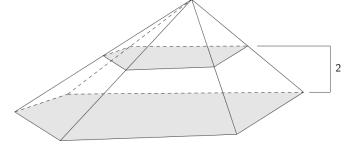
If the base is a polygonal region, then the *cone* is usually called a *pyramid*.

RECTANGULAR PYRAMID: Given a rectangular region B in a plane E and a point V not in E, the rectangular pyramid with base B and vertex V is the union of all segments VP for points P in B.

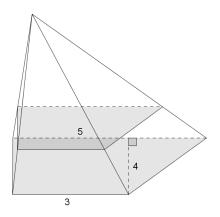
LATERAL EDGE AND FACE OF A PYRAMID: Suppose the base *B* of a pyramid with vertex *V* is a polygonal region, and P_i is a vertex of *B*. $\overline{P_iV}$ is called a *lateral edge* of the pyramid. If $\overline{P_iP_{i+1}}$ is a base edge of the base *B* (a side of *B*), and *F* is the union of all segments *PV* for *P* in $\overline{P_iP_{i+1}}$, then *F* is called a *lateral face* of the pyramid. It can be shown that the face of a pyramid is always a triangular region.

Problem Set

1. The base of a pyramid has area 4. A cross-section that lies in a parallel plane that is distance of 2 from the base plane has an area of 1. Find the height, *h*, of the pyramid.

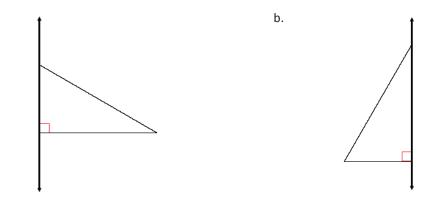


2. The base of a pyramid is a trapezoid. The trapezoidal bases have lengths of 3 and 5, and the trapezoid's height is 4. Find the area of the parallel slice that is three-fourths of the way from the vertex to the base.

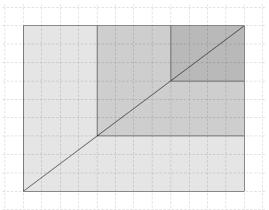


a.

- A cone has base area 36 cm^2 . A parallel slice 5 cm from the vertex has area 25 cm^2 . Find the height of the cone. 3.
- Sketch the figures formed if the triangular regions are rotated around the provided axis: 4.



5. Liza drew the top view of a rectangular pyramid with two cross-sections as shown in the diagram and said that her diagram represents one, and only one, rectangular pyramid. Do you agree or disagree with Liza? Explain.



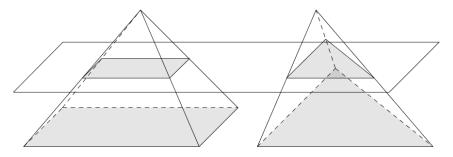
- 6. A general hexagonal pyramid has height 10 in. A slice 2 in. above the base has area 16 in^2 . Find the area of the base.
- 7. A general cone has base area 3 units². Find the area of the slice of the cone that is parallel to the base and $\frac{2}{3}$ of the way from the vertex to the base.

General Pyramids and Cones and Their Cross-Sections

S.45

engage

8. A rectangular cone and a triangular cone have bases with the same area. Explain why the cross-sections for the cones halfway between the base and the vertex have the same area.



9. The following right triangle is rotated about side *AB*. What is the resulting figure, and what are its dimensions?

