Lesson 10: The Volume of Prisms and Cylinders and Cavalieri's

Principle

Classwork

Opening Exercise

The bases of the following triangular prism T and rectangular prism R lie in the same plane. A plane that is parallel to the bases and also a distance 3 from the bottom base intersects both solids and creates cross-sections T^{\prime} and R^{\prime}.

a. Find $\operatorname{Area}\left(T^{\prime}\right)$.
b. Find $\operatorname{Area}\left(R^{\prime}\right)$.
c. Find $\operatorname{Vol}(T)$.
d. Find $\operatorname{Vol}(R)$.
e. If a height other than 3 were chosen for the cross-section, would the cross-sectional area of either solid change?

Discussion

Figure 1

Example 1

Example 2

Principle of parallel slices in the plane: If two planar figures of equal altitude have identical cross-sectional lengths at each height, then the regions of the figures have the same area.

Figure 2

Example

a. The following triangles have equal areas: $\operatorname{Area}(\triangle A B C)=\operatorname{Area}\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)=15$ units ${ }^{2}$. The distance between $\overleftrightarrow{D E}$ and $\overleftrightarrow{C C^{\prime}}$ is 3 . Find the lengths of $\overline{D E}$ and $\overline{D^{\prime} E^{\prime}}$.

b. Joey says that if two figures have the same height and the same area, then their cross-sectional lengths at each height will be the same. Give an example to show that Joey's theory is incorrect.

Discussion

Figure 3

CAVALIERI'S PRINCIPLE: Given two solids that are included between two parallel planes, if every plane parallel to the two planes intersects both solids in cross-sections of equal area, then the volumes of the two solids are equal.

Figure 4

Figure 5

Figure 6

Lesson Summary

Principle of parallel slices in the plane: If two planar figures of equal altitude have identical cross-sectional lengths at each height, then the regions of the figures have the same area.

Cavalieri's principle: Given two solids that are included between two parallel planes, if every plane parallel to the two planes intersects both solids in cross-sections of equal area, then the volumes of the two solids are equal.

Problem Set

1. Use the principle of parallel slices to explain the area formula for a parallelogram.
2. Use the principle of parallel slices to show that the three triangles shown below all have the same area.

Figure 1

Figure 2

Figure 3
3. An oblique prism has a rectangular base that is $16 \mathrm{in} . \times 9 \mathrm{in}$. A hole in the prism is also the shape of an oblique prism with a rectangular base that is 3 in . wide and 6 in . long, and the prism's height is 9 in . (as shown in the diagram). Find the volume of the remaining solid.

4. An oblique circular cylinder has height 5 and volume 45π. Find the radius of the circular base.

5. A right circular cone and a solid hemisphere share the same base. The vertex of the cone lies on the hemisphere. Removing the cone from the solid hemisphere forms a solid. Draw a picture, and describe the cross-sections of this solid that are parallel to the base.
6. Use Cavalieri's principle to explain why a circular cylinder with a base of radius 5 and a height of 10 has the same volume as a square prism whose base is a square with edge length $5 \sqrt{\pi}$ and whose height is also 10 . MATH'

